PLSOL Course Syllabus

Introduction to PL/SQL

e PL/SQL Overview
Benefits of PL/SQL Subprograms
Overview of the Types of PL/SQL blocks
Create a Simple Anonymous Block
Generate Output from a PL/SQL Block

PL/SQL ldentifiers
e List the different Types of Identifiers in a PL/SQL subprogram
Usage of the Declarative Section to define Identifiers
Use variables to store data
Identify Scalar Data Types
The %TYPE Attribute
What are Bind Variables?
Sequences in PL/SQL Expressions

Write Executable Statements
e Describe Basic PL/SQL Block Syntax Guidelines
Comment Code
Deployment of SQL Functions in PL/SQL
How to convert Data Types?
Nested Blocks
Identify the Operators in PL/SQL

Interaction with the Oracle Server

e Invoke SELECT Statements in PL/SQL to Retrieve data
Data Manipulation in the Server Using PL/SQL
SQL Cursor concept
Usage of SQL Cursor Attributes to Obtain Feedback on DML
Save and Discard Transactions

Control Structures

Conditional processing Using IF Statements
Conditional processing Using CASE Statements
Use simple Loop Statement

Use While Loop Statement

Use For Loop Statement

Describe the Continue Statement

Composite Data Types
e Use PL/SQL Records
e The %ROWTYPE Attribute
e Insert and Update with PL/SQL Records
e Associative Arrays (INDEX BY Tables)



Examine INDEX BY Table Methods
Use INDEX BY Table of Records

Explicit Cursors

What are Explicit Cursors?

Declare the Cursor

Open the Cursor

Fetch data from the Cursor

Close the Cursor

Cursor FOR loop

Explicit Cursor Attributes

FOR UPDATE Clause and WHERE CURRENT Clause

Exception Handling

Understand Exceptions

Handle Exceptions with PL/SQL

Trap Predefined Oracle Server Errors

Trap Non-Predefined Oracle Server Errors
Trap User-Defined Exceptions

Propagate Exceptions
RAISE_APPLICATION_ERROR Procedure

Stored Procedures and Functions

Understand Stored Procedures and Functions

Differentiate between anonymous blocks and subprograms
Create a Simple Procedure

Create a Simple Procedure with IN parameter

Create a Simple Function

Execute a Simple Procedure

Execute a Simple Function

Create Stored Procedures

Create a Modularized and Layered Subprogram Design

Modularize Development With PL/SQL Blocks

Describe the PL/SQL Execution Environment

Identity the benefits of Using PL/SQL Subprograms

List the differences Between Anonymous Blocks and Subprograms

Create, Call, and Remove Stored Procedures Using the CREATE Command and SQL
Developer

Implement Procedures Parameters and Parameters Modes

View Procedures Information Using the Data Dictionary Views and SQL Developer

Create Stored Functions

Create, Call, and Remove a Stored Function Using the CREATE Command and SQL Developer
Identity the advantages of Using Stored Functions in SQL Statements
List the steps to create a stored function



Implement User-Defined Functions in SQL Statements

Identity the restrictions when calling Functions from SQL statements
Control Side Effects when calling Functions from SQL Expressions
View Functions Information

Create Packages
e ldentity the advantages of Packages
Describe Packages
List the components of a Package
Develop a Package
How to enable visibility of a Package s components?
Create the Package Specification and Body Using the SQL CREATE Statement and SQL
Developer
e Invoke Package Constructs
e View PL/SQL Source Code Using the Data Dictionary

Packages
e Overloading Subprograms in PL/SQL
Use the STANDARD Package
Use Forward Declarations to Solve Illegal Procedure Reference
Implement Package Functions in SQL and Restrictions
Persistent State of Packages
Persistent State of a Package Cursor
Control Side Effects of PL/SQL Subprograms
Invoke PL/SQL Tables of Records in Packages

Implement Oracle-Supplied Packages in Application Development
e What are Oracle-Supplied Packages?
e Examples of Some of the Oracle-Supplied Packages
How Does the DBMS_OUTPUT Package Work?
Use the UTL_FILE Package to Interact With Operating System Files
Invoke the UTL_MAIL Package
Write UTL_MAIL Subprograms

Dynamic SQL

The Execution Flow of SQL

What is Dynamic SQL?

Declare Cursor Variables

Dynamically executing a PL/SQL Block

Configure Native Dynamic SQL to Compile PL/SQL Code
Invoke DBMS_SQL Package

Implement DBMS_SQL with a Parameterized DML Statement
Dynamic SQL Functional Completeness

Design Considerations for PL/SQL Code
e Standardize Constants and Exceptions



Understand Local Subprograms

Write Autonomous Transactions

Implement the NOCOPY Compiler Hint

Invoke the PARALLEL_ENABLE Hint

The Cross-Session PL/SQL Function Result Cache
The DETERMINISTIC Clause with Functions
Usage of Bulk Binding to Improve Performance

Triggers

Describe Triggers

Identify the Trigger Event Types and Body

Business Application Scenarios for Implementing Triggers

Create DML Triggers Using the CREATE TRIGGER Statement and SQL Developer
Identify the Trigger Event Types, Body, and Firing (Timing)

Statement Level Triggers Versus Row Level Triggers

Create Instead of and Disabled Triggers

How to Manage, Test, and Remove Triggers?

Create Compound, DDL, and Event Database Triggers

What are Compound Triggers?

Identify the Timing-Point Sections of a Table Compound Trigger
Compound Trigger Structure for Tables and Views

Implement a Compound Trigger to Resolve the Mutating Table Error
Compare Database Triggers to Stored Procedures

Create Triggers on DDL Statements

Create Database-Event and System-Event Triggers

System Privileges Required to Manage Triggers

Manage PL/SQL Code

What Is Conditional Compilation? Implement Selection Directives

Invoke Predefined and User-Defined Inquiry Directives

The PLSQL_CCFLAGS Parameter and the Inquiry Directive

Conditional Compilation Error Directives to Raise User-Defined Errors

The DBMS_DB_VERSION Package

Write DBMS_PREPROCESSOR Procedures to Print or Retrieve Source Text



